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Abstract

The Metropolis-Hastings (MH) algorithm is a way to IID sample
a provided target distribution π(x). It works by repeatedly sampling
a separate proposal distribution T (x, x′) to generate a random walk
{x(t)} which converges to a set of samples of π. Here, we introduce a
T -updating phase after the cooling period and before sampling begins.
In the updating phase, {x(t)} is used to update T at t and our update
method corresponds to the information-theoretically optimal mean-
field approximation to π. We employ our algorithm to sample the
energy distribution for several spin-glasses and we demonstrate the
superiority of our algorithm to the conventional MH algorithm.
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1 Introduction

1.1 Overview of Metropolis-Hastings

Monte Carlo methods are a powerful tool for evaluating integrals and
simulating stochastic systems. The core of any such method is an
algorithm for producing a many-point IID sample of a provided target

probability distribution π(x ∈ X). Often this is done by using the
ratio π(x′)/π(x′′) to fill in a Markov transition matrix a(x′, x′′) ≡
P (x(t + 1) = x′ | x(t) = x′′). That matrix is then iteratively applied
starting from a randomly chosen initial x. For a proper relationship
between a and π, the resultant random walk asymptotically gives the
desired IID sample of π(x).

One popular method for constructing the transition matrix a is
the Metropolis-Hastings (MH) algorithm [1, 2, 3, 4]. This a pro-
duced by this algorithm is parameterized by a proposal distribu-

tion T (x, x′). Typically T is set before the start of the Markov chain
in a π-independent manner and fixed throughout the running of that
chain. The rate at which the random walk produced in the associ-
ated Markov chain converges to the desired IID sample is crucially
dependent on the relation between T and π however.

An important example of this is that if T (x, x′) = π(x), then the
Markov chain produced by MH is a perfect IID sampler of π (see
below). Unfortunately, typically one cannot exploit this because one
cannot evaluate π(x). (Only the ratios of π(x)’s values for different x
can be evaluated.) However since the set {x(t)} produced by the MH
algorithm is (eventually) an IID sample of π, one can use {x(t)} to
produce a empirical estimate of π [5]. This suggests that we empiri-
cally update T during the random walk to be an increasingly accurate
estimate of π.

1.2 Approximating the target distribution

Typically X is high-dimensional, and for the density estimation of π
to work well it must be restricted to producing estimates from a rela-
tively low-dimensional space, Q. Intuitively, the idea is to try to find
the q ∈ Q that is “closest” to π and use that to update T , presuming
that this will produce the most quickly converging random walk. We
generically call such algorithms Adaptive Metropolis Hastings (AMH).
To specify an AMH algorithm one must fix the measure of closeness,
the choice of Q, and the precise details of the resultant density esti-
mation algorithm. One must then specify how the estimates of π(x)
are used to update T (x, x′).
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The most popular way to measure closeness between probability
distributions is with the Kullback-Leibler (KL) distance [6]:

D(p||p′) ≡ −
∑

x

p(x)ln[p′(x)/p(x)] (1)

Recent work in Probability Collectives [12, 7, 8, 11] provides insight
into how to do density estimation to minimize KL distance when Q is
low-dimensional. In particular, say Q is the set of all product distri-
butions over X, q(x) =

∏

i qi(xi). (Loosely speaking, this is equivalent
to a mean-field approximation.) Then D(q||π) is minimized if

qi(xi) ∝ e−βE(ln(π)|xi) , ∀i (2)

as shown in [7, 8]. (Note that D(q||π) is just the associated fre energy
of q if π is a Boltzmann distribution.)

Unfortunately, the expectation values in Eq. 2 depends on the qj 6=i.
Usually we cannot solve this coupled set of equations in closed form.
As an alternative though, we can use sampling processes to perform
an iterative search for the q that minimizes D(q||π). More concretely,
we can use IID samples of q to form estimates of E(ln(π) | xi = s) for
all variables xi and associated potential values s. Those estimates are
all that is needed to perform a step in a Newton’s method search for
argminq[D(q||π)] [7, 8, 9]. Because Q is a product distribution, this
estimation procedure scales well to large spaces X. Moreover, the esti-
mates and the associated updates of q are parallelized by construction,
lending the algorithm to particularly fast implementation.

Here, we take a different approach and consider the KL distance
from π to q rather than vice-versa. This is arguably a more appropriate
kind of distance measure, given the information-theory derivation of
KL distance [7, 8]. Moreover, the product distribution minimizing this
distance can be written down directly: it has the same marginals as π,
i.e., the optimal q obeys qi = πi ∀i [7, 8]. And as the random walk of
the conventional MH algorithm converges to the desired IID sample
of π, the i’th component of the elements of the random walk, {xi(t)},
becomes an IID sample of πi. So if the number of possible xi values
is not too large, we can use simple histogramming of the elements of
the random walk produced by the MH algorithm to form our estimate
of each marginal πi, and therefore of the q minimizing D(q||π). In
particular, we don’t have to run a parallel process of IID sampling of
q and updating it accordingly to form such an estimate.

In the next section we review the MH algorithm’s details. Next
we present the details of our AMH algorithm here. We end with
experiments validating our algorithm.
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2 Metropolis-Hastings algorithm

For a transition matrix a(x, y) to preserve probability,
∑

x a(x, y) =
1 ∀y (since

∑

x,z a(x, z)δ(y, z) must equal 1 for all y). Conservation
of probability also means that any eigenfunctions that lie on the unit
simplex have eigenvalue 1, i.e., they are fixed points of a. All other
eigenfunctions connect points within the simplex, i.e., have the sum of
their components = 0.1 Those eigenfunctions cannot have eigenvalues
> 1, as otherwise repeated application of a to a point in the simplex
that isn’t an eigenfunction would map it off the simplex. Similarly, if a
has only one fixed point, they can’t have eigenvalues of 1, and so must
have eigenvalues < 1. So if a has just a single eigenfunction and we
express a distribution in terms of the eigenfunctions of a, we see that
running that distribution through that matrix maps the distribution
geometrically closer (say according to a L2 norm) to a’s fixed point.

So if a has only one fixed point, a Markov chain based on a will
map any initial point x′ (i.e., any initial distribution over x values,
δ(x, x′)) to that fixed point distribution. In other words, if π is that
fixed point distribution, then for large enough n we can write

π(x(n)) ≈

∫

dx(1)dx(2) . . . dx(n− 1) δ(x(1), x′)
n
∏

t=2

a(x(t), x(t− 1)).(3)

Conversely, say we use a to construct a random walk, i.e., say we
iterate the (Markovian) process of applying a(x, x(t)) to the current
point x(t) to get a distribution over x, which is then sampled to get
the next point x(t + 1). If the first point in the walk is set to x′, then
the probability that the random walk is the set of points {(x(t)} is just
δ(x(1), x′)

∏n
t=2 a(x(t), x(t − 1)). Marginalizing this over all x(t < n)

and comparing to Eq. 3, we see that the probability distribution of
the n’th point in the walk is just π.

So say we produce many random walks and look at the set of last
points in each one. Those points will form a many-point IID sam-
ple of π. Since this is true for any starting point x′, we can instead
daisy-chain those Markov processes one after the other, i.e., run one
particularly long Markov chain to get many samples of π. The MH al-
gorithm exploits this by constructing a transition matrix whose single
fixed point is the desired distribution π. It works as follows:

1. Given current state x(t), draw y from the proposal distribution
T (x(t), y).

1Write
∑

y
a(x, y)v(y) = αv(x), and then sum both sides over x. Since

∑

x
a(x, y) = 1,

we get
∑

y
v(y) = α

∑

x
v(x), which for α 6= 1 implies

∑

x
v(x) = 0.
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2. Draw a random number r uniformly in [0, 1] and update

x(t + 1) =

{

y, if r ≤ R(x(t), y)
x(t), otherwise

(4)

where

R(x, y) = min

{

1 ,
π(y)T (y, x)

π(x)T (x, y)

}

. (5)

3. Repeat from step 1.

Note that, as claimed previously, for T (s, t) = π(t), R always equals
1, and the newly sampled point is always accepted.

Let bt be the distribution at time t. Then the MH algorithm is
equivalent to multiplying bt by the transition matrix

a(x(t + 1) 6= x(t), x(t)) =

T (x(t), x(t + 1)) min[1,
T (x(t + 1), x(t)) π(x(t + 1))

T (x(t), x(t + 1)) π(x(t))
] (6)

with a(x(t), x(t)) given by normalization. Now if

∫

dx a(y, x)p(x)− p(y) =

∫

dx [a(y, x)p(x)− a(x, y)p(y)] = 0, (7)

then p(y) will not change under the transition matrix. Accordingly,
for bt to be a fixed point of this transition matrix it suffices to have
detailed balance: ∀x, y,

a(y, x) bt(x) = a(x, y) bt(y) (8)

If both T and π are nowhere zero, in light of Eq. 6, this means that
bt must equal π. (These conditions can be weakened, but they suffice
for this synopsis of MH.) So for such T and π there is a fixed point of
a at π, as desired.2

Say we allow T and therefore a to update stochastically from earlier
elements of the random walk, and write at for the transition matrix
at time t. Assume each at has only one fixed point, which for all
t is the same distribution π. (The difference among the at is what
their other eigenfunctions are.) For exaple, this is the case if each at

is generated as in the MH algorithm, just from different associated
proposal distributions, T t.

Since the application of any such at to any distribution maps it ge-
ometrically closer to π, the application of any sequence of such at must
iteratively map the distribution closer and closer to π. In other words,

2The uniqueness of that fixed point holds so long as a is irreducible and acyclic [?].
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the approximation of Eq. 3 still holds if each a is replaced by a at,
no matter how the sequence of {at} are determined. (Intuitively, the
distance from the distribution at time t to π is a Lyaponov function.)

Unfortunately, this modification of Eq. 3 does not give us the dis-
tribution of the n’th point in the random walk when the at are set
adaptively from the elements in the random walk itself. For that to
be the case we would need

π(x(n)) ≈

∫

dx(1)dx(2) . . . dx(n− 1) da2da3 . . . dan

n
∏

t=2

P (at | x(1), . . . , x(t− 1)) at(x(t), x(t− 1))

× δ(x(1), x′). (9)

However because the weight of each integration variable x(t′ < t)
in the integral is “warped” by the P (at | x(1), . . . , x(t − 1)) terms,
integrating over it is no longer equivalent to the application of a matrix
at′(x(t′+1), x(t′)) to a vector bt′(x(t′)). So the fact that such a matrix
multiplication maps bt′ closer to π provides no assurances concerning
our random walk.

We can circumvent this by having {at} determined ahead of time,
from a previous random walk which had a fixed transition matrix.
This is the approach we adopt here.

3 Our AMH algorithm

3.1 General considerations

As mentioned above, our AMH algorithm is based on using the random
walk to form increasingly accurate estimates of π and then updating
T t accordingly, i.e., it is a particular choice of P (T t | x(t)). There are
a number of subtleties one should account for in making this choice.

In practice there is almost always substantial discrepancy between
π and q, since Q is a small subset of the set of all possible π. This
means that setting T (x, y) = q(y) typically results in frequent rejec-
tions of the sample points. The usual way around this problem in
conventional MH (where T is fixed before the Markov process starts)
is to restrict T (x, y) so that x and y must be close to one another.
Intuitively, this means that once the walk finds an x with high π(x),
the y’s proposed by T (x, y) will also have reasonable high probability
(assuming π is not too jagged). We integrate this approach into our
AMH algorithm by setting T (x, y) to be q(y) “masked” to force y to
be close to x.
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Another important issue is that the earlier a point is on the ran-
dom walk, the worse it serves as a sample of π. To account for this,
one shouldn’t form qi(xi = s) at time n simply as the fraction of the
points for which xi(t < n) = s. Instead we form those estimates by
geometrically aging the points in forming q. This means that more
recent points have more of an effect on our estimate of π. This aging
has the additional advantage that it makes the evolution of τ a rela-
tively low-dimensional Markov process, which intuitively should help
speed convergence.

In [3, 2, 4] related ideas of how to exploit online-approximations
of π that are generated from the random walk were explored. None of
that work explicitly considers information-theoretic measures of dis-
tance (like KL distance) from the approximation to π. Nor is there
any concern to “mask” the estimate of π in that work. The algorithms
considered in that work also make no attempt to account for the fact
that the early x(t) should be discounted relative to the later ones. In
addition, not using product distributions, parallelization would not be
as straightforward with these alternatives schemes.

3.2 Details of our algorithm

Our proposed algorithm consists of three successive phases: the first of
these is the cooling phase and the third is the data collecting phase. In
both of those phases, the conventional Metropolis-Hastings algorithm
is used, i.e., there is no updating on the proposal distribution. The
second phase is where the proposal distribution is adaptively updated.
The details are presented below:

Let N be the number of components of x and qt the estimate of π
at the t’th step of the walk. We consider the following algorithm:

1. Set T t(x, y) to qt(y) masked so that y and x differ in only one
component:

T t(x, y) ∝ δ

(

N
∑

i=1

δ(xi − yi)−N + 1

)

N
∏

k=1

qt
i(yi) . (10)

2. As in conventional MH, sample [0, 1] uniformly to produce a r
and set

x(t + 1) =

{

y, if r ≤ Rt(x(t), y)
x(t), otherwise

(11)

where

Rt(x, y) = min

{

1 ,
π(y)T t(y, x)

π(x)T t(x, y)

}

. (12)
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3. Only in phase 2:
Periodically update q. If modN (t + 1) = 0, then update the set
{qt

i} by the non-negative multiplier α < 1:
For all i, x′i, if x′i = xi(t)

qt+1
i (x′i) = α(qt

i(x
′
i)− 1) + 1 (13)

otherwise
qt+1
i (x′i) = αqt

i(x
′
i) (14)

If modN (t + 1) 6= 0, then qt+1
i (x′i) = qt

i(x
′
i). To avoid freezing

the proposal distribution, qi is not allowed to get too close to
the boundary of the probability simplex (i.e., less than 0.2 × the
initial uniform distribution).

4. t← t + 1. Repeat from step 1.

We note again that in the the first phase of the algorithm, T is uniform
and step 3 is not implemented, in the second phase, all steps above are
implemented and in the third phase, step 3 is not implemented. We
also note that our updating method depend only on the current state
and hence is much more efficient than previously proposed methods
[2].

4 Experiments

4.1 Sampling Experiments

Currently there is no consensus on how to quantify “how close” a set
{x(t)} is to an IID sample of π. One approach is to input the set into a
density estimation algorithm [5]. One can then use KL distance from
that estimated distribution to π as the desired quantification. This can
be problematic in high-dimensional spaces though, where the choice of
density estimation algorithm would be crucial. However say we have a
contractive mapping F : x ∈ X → y ∈ Y where Y is a low-dimensional
space that captures those aspects of X that are of most interest. We
can apply F to the {x(t)} to produce its image in Y , {y(t)}. Next
one can apply something as simple and (relatively) unobjectionable
as histogramming to do the density estimation translating {y(t)} to
an associated estimate of the generating distribution over Y . We
can then use KL distance between that histogram and F (π) as the
desired quantification of how good our transition matrix is. This is
the approach we took here.

Another point one has to concern with is the existence of Kullback-
Leibler (KL) divergence which plagues almost all Monte Carlo gener-
ating distribution. This corresponds to the situation where no samples
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are obtained in region where π is non-zero. This is not a serious prob-
lem if the total probability, ε, associated to KL divergences is negligible
because the discrepany obtained on any expected value calculations
will be bound by ε. Figure 2 is devoted to gauging this effect.

Our first experiment concerns the Ising spin-glass model:

H(x) =
1

2

∑

<i,j>

Jijxixj +
∑

i

hixi (15)

where < i, j > denotes summation over all neighbours. In this function
the Jij and hi are randomly generated integers in the interval [−5 , 5]
and the xi can take on values −1 and 1. Our task is to sample the
associated Boltzmann distribution:

π(x) ∝ exp(−H(x)/T ) (16)

where T corresponds to the temperature in a thermodynamic setting.
We have chosen spin-glasses for illustration because it is generally be-
lieved that they display salient features of complex disordered systems
[10]. (Indeed, searching for spin-glass ground states is a NP-complete
problem.)

We have performed experiments on spin-glasses in a 1D ring for-
mation (with 50, 75 and 100 spins shown in Figure 1). In these ex-
periments, we firstly run, with random initial states, 5 long Markov
chains (800,000×N steps where N is the number of spins and data
are collected at the last quarter of chain) with the conventional MH
algorithm. We then average the energy distributions obtained to form
our target distribution. Its closeness to the true distribution is sug-
gested by smallest of the KL distances of the original distributions
(the bottom three lines in Figure 1).

We then produced 100 samples of energy distributions with the MH
and the adaptive MH methods, with chains of 40,000×N steps each.
We note that in the adaptive MH method, qi(xi) corresponds to the
the probability of spin i being in state xi. Data are again collected in
the last quarter of each chain in both case, and we performed proposal
distribution updates as detailed before in the third quarter of the
chains in the adaptive M-H case (with the updating parameter α =
0.98).

Figures 1 and 2 show the results of these experiments with the
error bars being the errors on the means. We see that AMH (with ◦
markers) outperforms conventional MH (with * markers) in sampling,
as well as in avoiding KL divergence. Similar experiments on a 2D
lattice have also been performed and the adaptive M-H shows similar
superior performance over conventional MH.
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4.2 Optimization Experiments

We now turn to using our algorithm to the problem of optimization.
We consider the same problem as before with 100 spins. In the simula-
tion, we randomly generate 20 different sets of {J, h} for the hamilto-
nian in eq. 15. The temperature is set to go from 1 to 0.05 in 19 equal
steps. We produce 50 samples each for the MH and AMH versions of
the algorithm and the results are presented in Fig. 3..

5 Conclusion

With the product distribution assumption, we have proposed a new
adaptive Metropolis-Hastings which is easy to implement and we have
shown its superiority over conventional Metropolis-Hastings with com-
puter experiments. Compared with adaptive Metropolis-Hastings pro-
posals [2, 3, 4], we have demonstrated the usefulness of our proposed
algorithm with highly non-trivial examples, i.e., spin-glasses, which
highlights the usefulness of our proposed algorithm for sampling com-
plex distribution. With annealing in temperature, our method is also
shown to be useful in hard optimization.

Besides, the q produced by AMH has many uses beyond improved
sampling. It can be used as an estimate of the marginals of π, i.e., as
an estimate of the optimal mean-field approximation to π. Because
they are product distributions, the successive qt can also be used as
the control settings in adaptive distributed control [8, 11]. (In this
application {x(t)} is the sequence of control variable states and π is
log of the objective function.) It’s being a product distribution also
means that the final q can be used to help find the bounded rational
equilibria of a non-cooperative game with shared utility functions [7].

Acknowledgements: We thank Bill Macready for stimulating
discussion. C.F.L. thanks NASA, University College (Oxford) and
NSERC (Canada) for finanical support.
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Figure 1: (* = MH, ◦ = AMH, + = MH with long chains. The error bars
are errors on the means.)
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Figure 2: (* = MH, ◦ = AMH. The error bars are errors on the means.)
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Figure 3: Results of 20 different spin-glasses. We note constants are added
to the y-axis so that the minimum energies found by AMH are zero. (* =
MH, ◦ = AMH. The error bars are errors on the means.)
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